Showing posts with label proof. Show all posts
Showing posts with label proof. Show all posts

Sunday, May 1, 2016

Reversed inequality

Recently, Mike Lawler posted a challenge base on the first question from the recent European Girls Math Olympiad (side note: what is "European" about this contest now that a US team participates?)

I enjoyed thinking about this problem and wanted to come up with something related to do with our kids. One way to see this problem is that it appears to reverse the direction of the inequality between the arithmetic mean and geometric mean. My version for younger students involves exploring this inequality first.

Discovering the Arithmetic Mean-Geometric Mean Inequality

I had J1 and J2 select two dice from our pound-o-dice. Initially, J1 chose a d20 and d6 while J2 chose a d12 and d6. I asked them to make a table with 6 columns and 7 rows (we ended up adding more, so probably better to ask for 8 columns and 10 rows). I had them label the columns:

  1. A
  2. B
  3. AxA +  BxB
  4. 2xAxB
They rolled their two dice and put the values into columns A and B, the calculated the other two columns as labeled.

J1's first results were 16 and 5. After filling in the rest of that row, he paused and then switched to 2d4. This wasn't a problem for our investigation, but he did miss some calculating practice with more difficult seed numbers.

After filling in 6 rows of data, I asked them what they noticed.




Here were some of the observations:
  • when A and B are the same, our calculated values are the same
  • when A and B are different, our calculated values are different
  • When A and B differ by 1, the calculated values differ by 1 (also vice versa)
  • AxA +  BxB > 2xAxB
  • We are only using positive integers

J2 really got into the spirit and asked for some more suggested columns. I told him to add:
AxA - BxB and (A-B) x (A-B). J1 also added the square of the difference.

With that, they noticed two more things:

  • AxA + BxB was larger than (A-B)x (A-B)
  • AxA + Bx B = 2x Ax B + (A-B)x(A-B)

You can see that they also added some negative numbers on J1's sheet and challenged one of these observations.

A picture proof

To finalize our exploration of the inequality, we used tiles to build intuition for a picture proof of this identity:

AxA + Bx B = 2x Ax B + (A-B)x(A-B)


This is one of the pictures we liked the most. In this case, A = 5 and B = 2. Along the left side and the bottom are rectangles AxB (the green + yellow and the blue + yellow regions). These two rectangles overlap in a BxB square (the yellow region) which they also highlighted with the 4-color square. The remaining red square is (A-B)x(A-B).

Side note: In our discussion, I was delighted that J2 would correct me whenever I slipped and said "greater than" instead of "greater than or equal to" when discussing the inequality.

Two quick algebra extensions
For kids who have already done a little algebra, proving the identity using the distributive law should be fairly straightforward. The other little extension is to show that our expression A2+B2≥ 2AB is equivalent to the arithmetic mean-geometric mean inequality.

Sunday, June 21, 2015

Triangles and Angles: a proof for 5 year olds

who: J2 (also P and J0)
what did we use: polydrons, polydron protractor

J2 and I were playing with polydrons and he got interested in measuring the various angles. Since there are three different triangles in the set, he got to test each of them and found that the angle sum was always 180 degrees. We went on to examine squares and pentagons to see what he could make of those.

In the evening, P and I were talking about about this investigation and I mentioned this proof that the interior angles of a polygon sum to $180 \times (n-2)$:



P was surprised and said that she likes this proof more:
In this version, you have to subtract the middle 360 degrees.

I was a bit surprised that I hadn't ever thought of this version or seen it elsewhere, but quickly realized we could repurpose it to finding the interior angles of a triangle itself.  Here's the picture:

Now, the argument:
  1. Angles of the large triangle are equal to the sum of the angles of the smaller triangles - 360
  2. Let x be the sum of interior angles of a triangle.
  3. Based on 1, we have x = 3x - 360
  4. Rearranging, we get x = 180.

Where we get stuck: a challenge for you

Here's the thing: the sum of interior angle measures of a triangle isn't 180 degrees. That is, it doesn't have to be if you are working in non-euclidean geometry. Here's a nice picture (not mine) of a triangle with angle sum of 270 degrees:

Comes from MathStackExchange



However, our proof doesn't seem to use any fancy postulates. Your challenge, why doesn't it work on a sphere? What extra postulate did we secretly use?

A side point about measurement

When my son was measuring the angles for an isosceles right triangle, he read 46 degrees off the protractor. I was too focused on getting to the punchline about all triangles having the same angle sum and I "corrected" the measurement to 45 degrees. He still said some things and we had a conversation about ideal mathematics and real measurement, but I felt it was a missed opportunity.

Wednesday, May 13, 2015

All triangles are equilateral: a coordinate geometry exploration

this was my comment on Dan Burfeind's blog. It has been too long since I copied it back here for me to remember all the editing intentions I had, so, I simply offer as-is:
For another great coordinate geometry investigation, you could spring off this numberphile video: All Triangles are Equilateral, which I saw in a post from Mike Lawler. Can the kids use coordinate geometry to investigate where the proof goes wrong? I’d suggest they follow Mike’s son and use a right triangle (even 3-4-5 as in the blog video).
Choosing a right triangle and setting it in the coordinate plane carefully (right angle at the origin, legs along the axes) makes the equations really nice and, I think, forms a useful demonstration of the power of coordinate geometry. If they play with the picture, there are further rewards as they see interesting relationships between triangle side lengths and the lengths of other key line segments.
A further tidbit out of this whole sequence is that you can also have an interesting discussion about what it means for something to be a proof. The numberphile argument looks, smells, and feels like a solid proof, but we know it is wrong. Something subtle was left out, but there are always subtle things left out of real proofs. Furthermore, we start with the feeling that, where two lines intersect is minor, technical and obvious. Then, it is suddenly a lot more difficult when we try to prove it. Then it turns out the original idea was wrong.
A classic progression: “obvious, hard, false.”