when: at lunch
where: local Japanese restaurant
Who is taller
While eating lunch today, we found a good excuse to talk about (mathematical) inequality. Next to our table were two spare chairs, a kid high chair and a standard adult chair. The natural questions:- if J2 sits in the high chair and J3 in the adult chair, who will be higher?
- Are you sure and why do you think so?
- What if you switch with J2 in the high chair and J3 in the adult chair?
- How confident are you of the answer now?
In the course of the conversation, they talked about who is taller standing (J2) and which chair has a higher seat. It made intuitive sense to them that the taller person in the higher seat would end up higher. Still, it was good to test:
With these simple props, it ended up being a surprisingly good conversation.
A broken calculator
After reading Mike Lawler's post about of Dan Finkel's Broken Calculator puzzle, I had to share it with J2. He was asleep at the time, so I made my own in pencilcode (a souped up version here). This morning, after breakfast, I showed it to J2, gave him the back story. We briefly talked about square roots to remind him, and then he was hooked.You can see his current progress here, working toward finding a way to get every integer from 0 to 109:
Mike's post and videos are very good, so I only want to make a couple points to complement his discussion:
- Playing with the calculator first made the problem much more accessible. For J2, it helped him see that the +5 and +7 buttons could only make the value larger. It also helped him recognize that he needed square numbers for his square root and to strategize about how to make them. Finally, it led him to discover the trick for making 1.
- Making other numbers than 2 became a very natural extension that he asked on his own. At first, he started recording (or having me record) the numbers he had made on a paper, then I added the table to our program to keep track automatically.
- He had fun the rest of the day asking other people, mostly his mother, if they could figure out how to make 2.
- It was also very easy to extend this by asking about other combinations than +5 and +7. We played with a +6 and +7 version that is, conceptually the same, but practically much more difficult since you lose the ones-digit preservation.
Finally, this same framework could be used easily with other operations. In particular, for kids who aren't yet ready for square roots, the reduction button could be division (e.g., divide by 4) or even subtraction (e.g., subtract 19).
I love these sort of conversations. Your "who's taller?" discussion reminded me of a similar conversation I once had with my daugher https://aofradkin.wordpress.com/2014/05/23/two-katies-and-a-zoe/
ReplyDeleteThree J'S Learning: The High Chair For Learning Inequalities (Also, A Broken Calculator) >>>>> Download Now
ReplyDelete>>>>> Download Full
Three J'S Learning: The High Chair For Learning Inequalities (Also, A Broken Calculator) >>>>> Download LINK
>>>>> Download Now
Three J'S Learning: The High Chair For Learning Inequalities (Also, A Broken Calculator) >>>>> Download Full
>>>>> Download LINK OM